

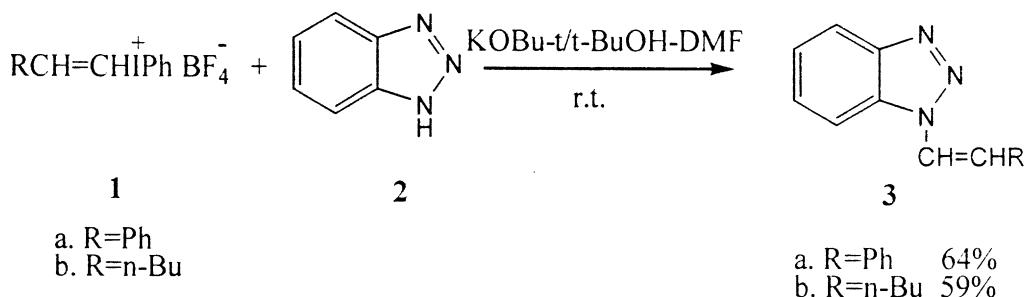
Hypervalent iodine in synthesis 73: a new stereoselective synthesis of 1-(1-alkenyl)benzotriazoles by the reaction of alkenyl(phenyl)iodonium salts with benzotriazole[†]

Peng-Fei Zhang^{a,b} and Zhen-Chu Chen^{a*}

^a Department of Chemistry, Zhejiang University (Xixi Campus), Hangzhou, Zhejiang 310028, P.R.China

^b Department of Chemistry, Hangzhou Teachers College

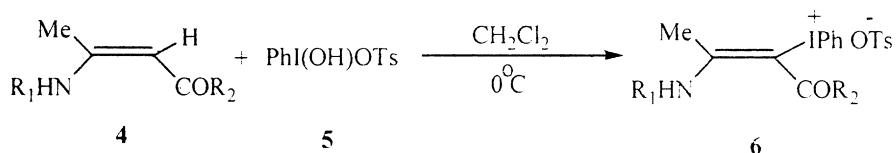
We report the preparation of 1-(1-alkenyl)benzotriazoles from alkenyl (phenyl)iodonium salts and benzotriazole. The reaction offers a simple and convenient route for the stereoselective synthesis of 1-(1-alkenyl)benzotriazoles. In addition, present method is particularly efficient for preparing 1-(1-alkenyl)benzotriazoles with amino-, acyl- and alkoxy-carbonyl substituents, which were difficult to prepare by conventional methods.


Keywords: hypervalent iodine, 1-(1-alkenyl)benzotriazoles

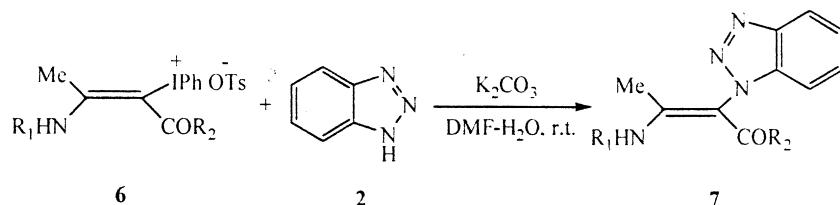
1-(1-Alkenyl)benzotriazoles have been widely used in the preparation of pyrrolo[2,3-d]pyrimidines,¹ carbazoles^{2,3} and indoles.^{4–6} This versatility has also made them key intermediates in the synthesis of natural products.^{7–9} There are several method for the synthesis of 1-(1-alkenyl)benzotriazoles. Previously the most general method for the preparation of 1-(1-alkenyl)benzotriazoles was developed by Rees and Torr¹⁰ and involved the dehydrohalogenation of the product from the reaction of 1-chlorobenzotriazole and an olefin. But unfortunately, this mild and simple method always yielded a mixture of 1-(1-alkenyl)- and 2-(1-alkenyl)benzotriazoles, in which the latter predominated. Later, Marky *et al.*¹¹ developed an alternative method which involved the preparation of 1-allyl-benzotriazoles by the alkylation of benzotriazole with allyl bromide and the subsequent base-catalysed isomerisation to 1-(1-alkenyl)benzotriazoles. The scope of this methodology was limited by the range of allyl halides available and furthermore the reaction leads to a mixture of *E*- and *Z*-isomers. The nucleophilic addition of benzotriazole anion to ethyl propiolate represents a further method for the synthesis of 1-(1-alkenyl)benzotriazoles.⁶ A markedly improved method for the synthesis of 1-(1-alkenyl)benzotriazoles was reported by Katritzky *et al.*^{12–14} It involved a Wittig reaction between the 1-(benzotriazolylmethyl)triphenylphosphonium chloride and a range of aldehydes. The stereoselectivity of this methodology (*trans* adduct isolated exclusively) was offset by the mod-

est yields obtained in all but one case. Finally the availability of 1-(1-alkenyl)benzotriazoles was extended considerably by the use of 1-(1-trimethylsilylalkyl)benzotriazoles in Peterson olefinations.¹⁵ The synthesis of 1-(1-alkenyl)benzotriazoles is of current interest.^{16,17} We now wish to report a simple and convenient method for the synthesis of 1-(1-alkenyl)benzotriazoles by the nucleophilic substitution reaction of benzotriazole anion and vinyl(phenyl)iodonium salts.

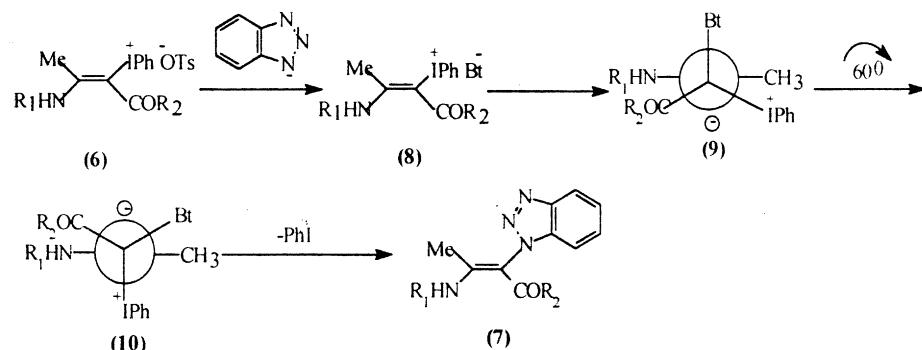
Recently our research interest is in the chemistry of hypervalent iodine compounds. Because of an excellent leaving group ability of a phenyliodonyl moiety, vinyl(phenyl)iodonium salts undergo nucleophilic vinyl substitutions under mild conditions, thus providing a useful route for the synthesis of various kinds of olefins.¹⁸ In an extension of this investigation we have examined the reaction of vinyl(phenyl)iodonium salts with benzotriazole as a simple and convenient route for the stereoselective synthesis of 1-(1-alkenyl)benzotriazoles.


First, we selected (*E*)-(β-phenylvinyl)phenyliodonium tetrafluoroborate (**1a**)¹⁹ and (*E*)-(β-n-butylvinyl)phenyliodonium tetrafluoroborate (**1b**)¹⁹ as representatives of vinyl(phenyl)iodonium salts for investigating their reactivity with benzotriazole. We found that in the presence of potassium *tert*-butoxide the reaction of vinyl(phenyl)iodonium salts (**1**) with benzotriazole (**2**) readily occurred in *t*-BuOH-DMF at room temperature to afford the 1-(1-alkenyl)benzotriazoles (**3**) (Scheme 1).

Scheme 1


* To receive any correspondence. E-mail: zhenchuc@mail.hz.zj.cn

[†] This is a Short Paper, there is therefore no corresponding material in *J Chem. Research (M)*.



- a: R₁=PhCH₂; R₂=OEt; yield, 60%
 b: R₁=CH₃; R₂=OEt; yield, 63%
 c: R₁=p-ClC₆H₄; R₂=OEt; yield, 55%
 d: R₁=PhCH₂; R₂=CH₃; yield, 51%
 e: R₁=PhCH₂; R₂=Ph; yield, 68%
 f: R₁=CH₃; R₂=CH₃; yield, 57%

Scheme 2

Scheme 3

Scheme 4

The products(3) were characterised by microanalyses, IR, ¹H NMR and MS.

It is known that the reaction of (E)-(β-phenylvinyl(phenyl)iodonium tetrafluoroborate(1a) with nucleophilic reagents is a stereospecific reaction and that retention of configurations is observed.¹⁸ However, a different result with complete inversion of configuration was obtained for the reaction of (1b), probably via an S_N2 transition state.²⁰ Our result is consistent with previous reports.^[20] The configuration of the products(3) were assigned using ¹H NMR spectroscopy: the vinylic protons of E-isomer showed a J value of 14.5Hz in contrast with 8.4Hz for those of the Z-isomer.²¹

Next, the applicability of this reaction to the functionalised vinyl(phenyl)iodonium salts was investigated. More recently, Papoutsis *et al.*²² reported that the reaction of methyl 3-aminocrotonate with [hydroxy(tosyloxy)iodo]benzene at 0°C readily gave the stable tosylate of methyl E-2-phenyliodonio-3-aminocrotonate. Following this procedure, we prepared several functionalized vinyl(phenyl)iodonium salts(6) (Scheme 2).

Because of the ease of vinylic substitutions of amino substituted vinyl(phenyl)iodonium salts,²² we found that the reaction of vinyl(phenyl)iodonium salts 6(a-f) with benzotri-

azole(2) readily occurred in the presence of potassium carbonate. In fact, simple stirring of (6) with (2) and K₂CO₃ in DMF-H₂O at room temperature for 6 hours gave, after workup and isolation, the desired 1-(1-alkenyl)benzotriazoles(7) in good yields (Scheme 3). The results are summarised in the Table 1.

The products(7) were characterised by microanalyses, IR, ¹H NMR and MS.

In order to confirm the configuration of products(7), a single-crystal X-ray structure of product 7a was determined as representative. This showed it is E-isomer (Fig. 1)

Table 1 Synthesis of 1-(1-alkenyl)benzotriazoles 7a-f

Entry	R ₁	R ₂	Product	Yield/%
a	PhCH ₂	EtO	(E)-7a	80
b	CH ₃	EtO	(E)-7b	94
c	p-ClC ₆ H ₄	EtO	(E)-7c	68
d	PhCH ₂	CH ₃	(E)-7d	73
e	PhCH ₂	Ph	(E)-7e	87
f	CH ₃	CH ₃	(E)-7f	67

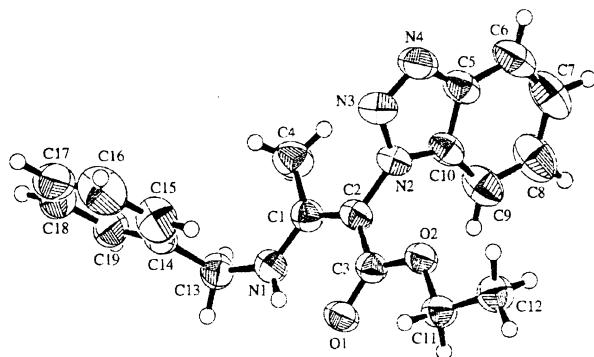


Fig.1 X-ray crystal structure for **7a**.

A multi-step addition-elimination mechanism, shown in Scheme 4, is compatible with the retention of stereochemistry in the nucleophilic vinylic substitutions of **6** with **2**. A β -benzylamino group of **6** makes it possible for a perpendicular attack of the benzotriazole anion to the π^* orbital, which produces an α -benzylamino-stabilised carbanion **9**. The internal 60° rotation of **9**, followed by reductive elimination of the strongly electron-withdrawing supernucleofuge, the phenyliodonio group, would give 1-(1-alkenyl)benzotriazoles **7** stereoselectively. Negative hyperconjugation between the supernucleofuge and the carbanionic electron pair in **9** accounts for the preference of the 60° rotation. Similarly, the presence of a β -phenyl substituent would facilitate the nucleophilic vinylic substitutions via a multi-step addition-elimination route, as was observed in the reaction of **1a**. Furthermore, the trisubstitution of the vinyl(phenyl)iodonium salts makes the S_N2 type transition state very difficult, because of the severe steric repulsion. Alternatively, ligand coupling on the iodine(III) of **8** will directly produce **7**.²⁵

In conclusion, the preparation of 1-(1-alkenyl)benzotriazoles from alkenyl(phenyl)iodonium salts by the reaction with benzotriazole has been established. The reaction offers a simple and convenient route for the stereoselective synthesis of 1-(1-alkenyl)benzotriazoles. In addition, the present method is particularly efficient for preparing 1-(1-alkenyl)benzotriazoles with amino-, acyl- and alkoxy carbonyl substituents, which were difficult to prepare by conventional methods.

Experimental

Melting points were measured on a X₄-Data microscope melting point apparatus and are uncorrected. Microanalyses were obtained using Carlo-Erba Ea-1100. IR spectra were recorded with a VECTOR spectrometer (Bruker). ¹H NMR spectra were recorded in CDCl₃ solution on a AVANCE DMX400 spectrometer (Bruker) at 400MHz and chemical shifts are reported in ppm downfield from tetramethylsilane. Mass spectra were obtained by electron impact at 70eV (HP5989B).

General procedure for the synthesis of **6:** Ph(OH)OTs (0.74g, 2mmol) was added to a solution of 4-(benzylamino)pent-3-en-2-one (0.378g, 2mmol) in CH₂Cl₂ (5ml) and the suspension was stirred for 1 hour under 0°C. The resulting solution was concentrated to half of its volume and the iodonium salt, (*E*)-3-phenyliodonio-4-benzylaminopent-3-en-2-one tosylate (**6d**) was precipitated upon the addition of diethyl ether, 0.575g (51%). M.p. 182–184°C; IR(KBr): 3200–3100cm⁻¹, 1665cm⁻¹, 1280cm⁻¹, 1180cm⁻¹; ¹H NMR(CDCl₃): δ 7.12–8.20 (m, 14H), 4.04 (d, 2H, J =6.0Hz), 3.36 (s, 3H), 2.51 (s, 3H), 2.30 (s, 3H); MS: 314 (0.37), 204 (3.38), 172 (49.42), 155 (4.26), 127 (2.23), 106 (100), 91 (72.14), 77 (27.18), 43 (53.64); Anal. Calcd for C₂₅H₂₆NO₄IS: C, 53.29; H, 4.65; N, 2.49. Found: C, 53.56; H, 4.38; N, 2.75.

Ethyl *E*-2-phenyliodonio-3-benzylamino-crotonate tosylate (6a**):** M.p. 90–92°C (lit.²² 90–92°C); IR(KBr): 3260–3100cm⁻¹, 1615cm⁻¹, 1285cm⁻¹, 1180cm⁻¹; ¹H NMR(CDCl₃): δ 6.92–8.02 (m, 15H),

4.54 (q, 2H, J =6.2Hz), 3.43 (d, 2H, J =7.2Hz), 4.06 (d, 2H, J =6.0Hz), 2.53 (s, 3H), 2.29 (s, 3H), 1.12 (t, 3H, J =6.0Hz); MS: 344 (6.13), 234 (45.34), 204 (19.42), 155 (58.98), 139 (68.22), 127 (8.12), 91 (100), 77 (38.35).

Ethyl *E*-2-phenyliodonio-3-methylamino-crotonate tosylate (6b**):** M.p. 108–110°C; IR(KBr): 3260–3100cm⁻¹, 1690cm⁻¹, 1225cm⁻¹, 1175cm⁻¹, 1060cm⁻¹; ¹H NMR(CDCl₃): δ 6.90–7.85 (m, 9H), 4.02 (q, 2H, J =6.2Hz), 3.43 (d, 3H, J =6.0Hz), 2.41 (s, 3H), 2.27 (s, 3H), 1.08 (t, 3H, J =6.2Hz); MS: 268 (3.66), 234 (3.53), 204 (5.03), 172 (33.01), 155 (19.43), 139 (58.26), 127 (7.68), 91 (100), 77 (21.12); Anal. Calcd for C₂₀H₂₄NO₃IS: C, 46.43; H, 4.68; N, 2.71. Found: C, 46.05; H, 4.36; N, 2.43.

Ethyl *E*-2-phenyliodonio-3-(4-chlorobenzyl)amino-crotonate tosylate (6c**):** M.p. 178–180°C; IR(KBr): 3180–3100cm⁻¹, 1705cm⁻¹, 1300cm⁻¹, 1185cm⁻¹, 1065cm⁻¹; ¹H NMR(CDCl₃): δ 6.92–7.11 (m, 2H), 7.28–7.59 (m, 11H), 3.88 (q, 2H, J =6.6Hz), 3.11 (s, 3H), 2.33 (s, 3H), 1.16 (t, 3H, J =6.6Hz); MS: 368 (0.42), 236 (0.46), 204 (13.17), 172 (24.01), 155 (1.85), 127 (100), 111 (1.41), 113 (0.49), 91 (34.49), 77 (5.95); Anal. Calcd for C₂₅H₂₅ClNO₅IS: C, 48.91; H, 4.10; N, 2.28. Found: C, 49.37; H, 3.88; N, 2.65.

(*E*)-2-phenyliodonio-3-benzylamino-1-phenylbut-2-en-1-one tosylate (6e**):** M.p. 199–201°C; IR(KBr): 3320–3210cm⁻¹, 1610cm⁻¹, 1320cm⁻¹, 1140cm⁻¹; ¹H NMR(CDCl₃): δ 7.02–7.65 (m, 19H), 4.60 (d, 2H, J =6.0Hz), 3.20 (s, 3H), 2.29 (s, 3H), 2.03 (s, 3H); MS: 376 (0.47), 204 (1.03), 172 (2.13), 155 (1.62), 127 (2.40), 106 (37.06), 105 (38.60), 91 (100), 77 (33.59); Anal. Calcd for C₃₀H₂₈NO₄IS: C, 57.60; H, 4.51; N, 2.24. Found: C, 57.98; H, 4.26; N, 2.60.

(*E*)-3-phenyliodonio-4-methylaminopent-3-en-2-one tosylate (6f**):** M.p. 210–212°C; IR(KBr): 3320–3190cm⁻¹, 1670cm⁻¹, 1220cm⁻¹, 1120cm⁻¹; ¹H NMR(CDCl₃): δ 7.13–7.90 (m, 9H), 3.47 (d, 3H, J =6.0Hz), 2.45 (s, 3H), 2.23 (s, 3H); MS: 300 (0.97), 204 (3.66), 172 (37.89), 155 (5.88), 139 (13.76), 127 (1.52), 91 (83.20), 77 (18.25), 43 (100); Anal. Calcd for C₂₄H₂₄NO₄IS: C, 52.47; H, 4.40; N, 2.55. Found: C, 52.81; H, 4.78; N, 2.86.

General procedure for the synthesis of **3a and **3b**:** To a solution of benzotriazole (0.19g, 1 mmol) and BuOK (0.22g)/BuOH (5ml) in DMF (5ml) was added a solution of **1a** (0.394g, 1mmol) in DMF (10ml), and the mixture was stirred for 24 hours at room temperature. Then water (40 ml) was added to the reaction mixture, and it was extracted with CH₂Cl₂ (10 ml×2). The extracts were dried (Na₂SO₄) and evaporated to dryness. The residue was purified by column chromatography on silica gel using a mixture of cyclohexane–ethyl acetate (4:1) as the eluent to give 0.14g (64%) of (*E*)-1-(1-styryl)benzotriazole (**3a**) as a white powder. M.p. 113–115°C; IR(KBr): 3020cm⁻¹, 1656cm⁻¹, 1650cm⁻¹, 1647cm⁻¹, 1635cm⁻¹, 1255cm⁻¹, 740cm⁻¹; ¹H NMR(CDCl₃): δ 8.92 (d, 1H, J =14.5Hz), 8.54 (d, 1H, J =14.5Hz), 7.20–7.62 (m, 9H); MS: 221 (M⁺, 34.31), 103 (100); Anal. Calcd for C₁₄H₁₁N₃: C, 76.00; H, 5.01; N, 18.99. Found: C, 76.37; H, 4.80; N, 19.32.

(*Z*)-1-(1-hexenyl)benzotriazole (3b**):** M.p. 83°C; IR(KBr): 3020cm⁻¹, 1684cm⁻¹, 1653cm⁻¹, 1647cm⁻¹, 1636cm⁻¹, 1457cm⁻¹, 1265cm⁻¹, 940cm⁻¹; ¹H NMR(CDCl₃): δ 8.04 (d, 1H, J =8.4Hz), 7.88 (d, 1H, J =8.4Hz), 7.39–7.54 (m, 4H), 2.98 (t, 2H), 2.62 (m, 4H), 1.25 (t, 3H); MS: 201 (M⁺, 18.10), 57 (100); Anal. Calcd for C₁₂H₁₅N₃: C, 71.61; H, 7.51; N, 20.88. Found: C, 72.28; H, 7.26; N, 21.23.

General procedure for the synthesis of **7a–7f:** To a solution of benzotriazole (0.19g, 1mmol) and K₂CO₃ (0.2g) in DMF (2ml)–H₂O (2ml) was added a solution of **6a** (0.593g, 1mmol) in DMF (8ml)–H₂O (8ml), and the mixture was stirred for 6 hours at room temperature. Then waver (30 ml) was added to the reaction mixture, and it was extracted with Et₂O (10ml×2). The extracts were dried (Na₂SO₄) and evaporated to dryness. The residue was purified by column chromatography on silica gel using a mixture of cyclohexane–ethyl acetate (4:1) as the eluent to give 0.27g (80%) of (*E*)-1-1-ethoxycarbonyl-2-(*N*-benzylamino)-1-propenylbenzotriazole (**7a**) as a white powder. M.p. 62–64°C; IR(KBr): 3200–3130cm⁻¹, 1655cm⁻¹, 1280cm⁻¹, 1170cm⁻¹; ¹H NMR(CDCl₃): δ 7.21–7.98 (m, 9H), 4.50 (d, 2H, J =5.7Hz), 3.95 (q, 2H, J =7.1Hz), 1.56 (s, 3H), 0.92 (t, 3H, J =7.1Hz); ¹³C NMR(CDCl₃, 100MHz): δ 167.31, 162.84, 145.46, 137.17, 135.53, 129.08, 127.89, 127.54, 126.94, 123.67, 119.85, 110.08, 94.34, 59.65, 47.50, 14.44, 14.22; MS: 336 (M⁺, 1.07), 291 (1.61), 279 (37.52), 155 (1.40), 118 (1.50), 105 (4.45), 91 (100), 57 (12.91), 43 (21.82); Anal. Calcd for C₁₉H₂₀N₄O₂: C, 67.84; H, 5.99; N, 16.66. Found: C, 67.48; H, 5.96; N, 17.03.

(*E*)-1-[1-ethoxycarbonyl-2-(*N*-methylamino)-1-propenyl]benzotriazole (7b**):** M.p. 76–78°C; IR(KBr): 3200–3100cm⁻¹, 1680cm⁻¹, 1225cm⁻¹, 1110cm⁻¹; ¹H NMR(CDCl₃): δ 7.10–8.00 (m, 4H), 3.84 (q, 2H, J =7.2Hz), 3.02 (d, 3H, J =6.0Hz), 1.49 (s, 3H), 0.91

(t,3H,*J*=7.2Hz); MS: 260 (M⁺,1.17), 215 (2.76), 203 (23.12), 142 (7.80), 118 (5.76), 43(100); Anal. Calcd for C₁₃H₁₆N₄O₂: C,59.99; H,6.20; N,21.52. Found: C, 60.36; H,5.88; N,21.21.

(*E*)-1-[1-ethoxycarbonyl-2-(*N*-(4-chlorobenzyl)amino)-1-propenyl]benzotriazole (**7c**): M.p. 132–134°C; IR(KBr): 3180–3100cm⁻¹, 1640cm⁻¹, 1280 cm⁻¹, 1150 cm⁻¹; ¹H NMR(CDCl₃): δ6.50–6.70 (m,2H), 6.90–7.10(m,2H), 7.45–7.80(m,4H), 3.85 (q,2H,*J*=7.2Hz), 2.75 (s,3H), 1.10 (t,3H,*J*=7.2Hz); MS: 358 (M⁺,0.37), 356 (M⁺,1.07), 313 (1.29), 311(3.87), 240 (1.76), 238(5.31), 125(19.30), 123(58.00), 118 (2.81), 76(100); Anal. Calcd for C₁₈H₁₇ClN₄O₂: C,60.58; H,4.80; N,15.73. Found: C,60.87; H,5.14; N,15.40.

(*E*)-1-[1-acetyl-2-(*N*-benzylamino)-1-propenyl]benzotriazole (**7d**): M.p. 76–78°C; IR(KBr): 3190–3100cm⁻¹, 1655cm⁻¹, 1280 cm⁻¹, 1130 cm⁻¹; ¹H NMR(CDCl₃): δ 7.20–7.80(m,9H), 4.32 (d,2H,*J*=6Hz), 2.33 (s,3H), 1.85 (s,3H); MS: 306 (M⁺,0.82), 132(19.30), 123(18.43), 119 (1.51), 106(3.88), 91(100), 43(18.99); Anal. Calcd for C₁₈H₁₈N₄O: C,70.57; H,5.92; N,18.29. Found: C,70.27; H,5.83; N,17.96.

(*E*)-1-[1-benzoyl-2-(*N*-benzylamino)-1-propenyl]benzotriazole (**7e**): M.p. 124–126°C; IR(KBr): 3300–3200cm⁻¹, 1620cm⁻¹, 1280 cm⁻¹, 1190 cm⁻¹; ¹H NMR(CDCl₃): δ 11.46(br,1H), 6.83–7.30(m,14H), 4.50 (d,2H,*J*=5Hz), 2.23 (s,3H); MS: 354 (M⁺,1.32), 119 (1.81), 105(100), 91(57.82); Anal. Calcd for C₂₂H₁₈N₄O: C,74.56; H,5.12; N,15.81. Found: C,74.88; H,4.81; N,16.25.

(*E*)-1-[1-acetyl-2-(*N*-methylamino)-1-propenyl]benzotriazole (**7f**): M.p. 96–98°C; IR(KBr): 3200–3100cm⁻¹, 1705cm⁻¹, 1250 cm⁻¹, 1120 cm⁻¹; ¹H NMR(CDCl₃): δ 7.20–7.75(m,4H), 3.10 (d,3H,*J*=6Hz), 2.25 (s,3H), 2.05(s,3H); MS: 230 (M⁺,2.13), 118 (3.85), 112(1.45), 43(100); Anal. Calcd for C₁₂H₁₄N₄O: C,62.16; H,6.13; N,24.33. Found: C,61.81; H,5.77; N,24.69.

X-Ray diffraction study: X-Ray structure determination of **7a** [C₁₉H₂₀O₂N₄]: Single crystals of compound **7a** were grown by slow evaporation of methanol. A crystal of size 0.20×0.20×0.30nm was used for data collection on an Rigaku AFC7R single crystal X-ray diffractometer using Mo-K α radiation ($\lambda=0.71069\text{\AA}$) and ω –2 θ scan mode to a maximum θ range of 55.0°. $M=336.39$, monoclinic, space group C2/c, $a=13.071(3)$, $b=8.360(1)$, $c=17.418(4)\text{\AA}$, $\beta=109.01(2)$, $V=1799.7(7)\text{\AA}^3$, $Z=4$, $D_c=1.241\text{g/cm}^3$.

The structure was solved by direct methods²³ and expanded using Fourier techniques²⁴. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included but not refined. The final cycle of fullmatrix least-squares refinement was based on 2395 observed reflections ($I>2.50\sigma(I)$) and 227 variable parameters and converged (largest parameter was 0.00 times esd) with unweighted and weighted agreement factors of:

$$R=\Sigma \|F_0| - |F_c\|/\Sigma |F_0|=0.042$$

$$R_w=[\Sigma w(|F_0| - |F_c|)^2/\Sigma |F_0|^2]^{1/2}=0.051$$

The standard deviation of an observation of unit weight was 1.85. The weighting scheme was based on counting statistics and included a factor ($P=0.030$) to downweight the intense reflections. Plots of $\Sigma w(|F_0| - |F_c|)^2$ versus $|F_0|$, reflection order in data collection, $\sin\theta/\lambda$ and various classes showed no unusual trends. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.15 and -0.15e\AA^{-3} , respectively.

Received 24 December 2001; accepted 5 February 2002
Paper 01/1184

References

- 1 E.D. Edstrom and W. Yuan, *Tetrahedron Lett.*, 1991, **32**, 323 and references therein.
- 2 C. Graebe and F. Ullman, *Justus Leibigs Ann. Chem.*, 1896, **291**, 16.
- 3 E.M. Burgess, R. Carithers and L. McCullagh, *J. Am. Chem. Soc.*, 1968, **90**, 1923.
- 4 S.J. Barker and R.C. Storr, *J. Chem. Soc., Perkin Trans. 1*, 1990, 485.
- 5 A. Maquestiau, D. Beugnies, R. Flammang, A.R. Katritzky, M. Soleiman and J.N. Lam, *J. Chem. Soc., Perkin Trans. II*, 1988, 1071.
- 6 P.A. Wender and C.B. Cooper, *Tetrahedron*, 1986, **42**, 2985.
- 7 P.A. Wender and C.B. Cooper, *Tetrahedron Lett.*, 1987, **28**, 6125.
- 8 Z. Sheikh, R. Steel, A.S. Tasker and A.P. Johnson, *J. Chem. Soc., Chem. Commun.*, 1994, 763.
- 9 J.K. Dutton, R.W. Steel, A.S. Tasker, V. Popsaviv and A.P. Johnson, *J. Chem. Soc., Chem. Commun.*, 1994, 765.
- 10 C.W. Rees and R.C. Storr, *J. Chem. Soc. (C)*, 1969, 1478.
- 11 M. Marky, H. Schmid and H.-J Hansen, *Helv. Chim. Acta*, 1979, **62**, 2129.
- 12 A.R. Katritzky, R.J. Offerman, P. Cabildo and M. Soleiman, *Recl. Trav. Chim., Pays-Bas* 1988, **107**, 641.
- 13 A.R. Katritzky, W. Kuzmierkiewicz, B. Rachwal, S. Rachwal and J. Thompson, *J. Chem. Soc., Perkin Trans. 1*, 1987, 811.
- 14 A.R. Katritzky, S. Rachwal, K.C. Caste, F. Mahni, K.W. Law and O. Rubio, *J. Chem. Soc., Perkin Trans. 1*, 1987, 781.
- 15 A.R. Katritzky, D. Toader and L. Xie, *Synthesis*, 1996, 1425.
- 16 A.P. Johnson, J.K. Dutton and D.P. M. Pleynet, *Heterocycles*, 1994, **37**, 1913.
- 17 D.P.M. Pleynet, J.K. Dutton and A.P. Johnson, *Tetrahedron*, 1999, **55**, 11903.
- 18 (a) M. Ochiai, K. Sumi, Y. Tokaoka, M. Kyurishima, Y. Nagao, M. Shiro and E. Fujita, *Tetrahedron*, 1988, **44**, 4095; (b) T. Okuyama, T. Takino, T. Sueda and M. Ochiai, *J. Am. Chem. Soc.*, 1995, **117**, 3360; (c) P.J. Stang and V.V. Zhdankin, *Chem. Rev.*, 1996, **96**, 1123; (d) J. Yan and Z.-C. Chen, *Tetrahedron Lett.*, 1999, **40**, 5757; (e) J. Yan and Z.-C. Chen, *Synth. Commun.*, 1999, **29**, 2867; (f) J. Yan and Z.-C. Chen, *Synth. Commun.*, 1999, **29**, 3275; (g) J. Yan and Z.-C. Chen, *Synth. Commun.*, 1999, **29**, 3605; (h) J. Yan and Z.-C. Chen, *Synth. Commun.*, 2000, **30**, 1009; (I) J. Yan and Z.-C. Chen, *Synth. Commun.*, 2000, **30**, 2359; (j) Yan, J.; Chen and Z.-C. Chen, *Synth. Commun.*, 2000, **30**, 3897.
- 19 M. Ochiai, T. Shu, T. Nagaoka and Y. Kitagawa, *J. Org. Chem.*, 1997, **62**, 2130.
- 20 (a) M. Ochiai, K. Oshima and Y. Masaki, *Tetrahedron Lett.*, 1991, **32**, 7711; (b) M. Ochiai, K. Oshima and Y. Masaki, *J. Am. Chem. Soc.*, 1991, **113**, 7059.
- 21 It was reported that for 1-(1-propenyl)benzotriazole the coupling constants of vinylic protons are 14.5Hz for the *trans*-isomer and 8.5Hz for the *cis*-isomer, see Ref.¹⁰.
- 22 I. Papoutsis, S. Spyroudis and A. Varvoglis, *Tetrahedron*, 1998, **54**, 1005.
- 23 SHELSX86: G. M. Sheldrick, C. Kruger and R. Goddard, (1985). In: *Crystallographic Computing 3* Oxford University Press, pp.175–189.
- 24 DIRDIF92: P.T. Beurskens, G. Admiraal, G. Beurskens, W.P. Bosman, S. Garcia-Granda, R.O. Gould, J.M.M. Smits and C. Smykalla, (1992). The DIRDIF program system, Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
- 25 S. Oae and Y. Uchida, *Acc. Chem. Res.*, 1991, **24**, 202.